skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tavares, Justin K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrofluorocarbons (HFC), which are mildly flammable and pose potential fire risks, have received greater attention as a viable low global warming potential alternative to traditional refrigerant and fire-suppressant compounds. However, the reactivity of these compounds can be exacerbated under certain conditions, with buoyancy-induced instability growth promoting flame acceleration and substantially increasing flame speeds of HFC/oxidizer deflagrations. Therefore, the flame acceleration of HFC/oxidizer deflagrations must be investigated to properly assess the flammability characteristics of these compounds. This study investigates the effect of the Rayleigh-Taylor instability on instability growth rates during the linear regime. To this end, simulations were performed tracking the growth of instabilities caused by an initial disturbance in the flame front, from which dispersion relations were derived for R-32/air mixtures varying the gravitational acceleration. 
    more » « less
  2. Hydrofluorocarbons (HFC), which are mildly flammable and pose potential fire risks, have received greater attention as a viable low global warming potential alternative to traditional refrigerant and fire-suppressant compounds. Therefore, there is a demand to accurately quantify their flammability and reactivity to establish proper safety metrics. This study investigates the effects of radiation heat loss on slowlypropagating HFC/air laminar flames. Planar 1-D simulations of R-32/air and R-1234yf/air flames show significant reductions in laminar flame speed due to radiative heat losses from the flame zone. Simulations of spherically expanding flames (SEF) revealed that the radiation-induced flow needs to be considered when interpreting data from experiments. To this end, a Spherical-flame RADiation-Induced Flow (SRADIF) model was developed to estimate the burned gas inward flow velocities in constant-pressure SEFs, utilizing the optically thin limit assumption to model radiation heat loss. The model was validated against results from detailed numerical simulations of SEFs, from which radiation-induced inward flow was derived using a new formulation considering both the radiation heat loss and convective flow effects. Results show that SRADIF accurately predicts the inward flow velocity for R-32/air mixtures over a range of conditions and performs significantly better compared to existing analytical models. However, the model was unable to accurately predict flow velocities for R-1234yf/air flames and the reason for this is discussed. 
    more » « less